French Contribution To The Construction Of SKA-MID

Stéphane Gauffre
Outline

- Receiver overview
- First Design
- New Design
- Development plan
Receiver overview

- 5 SKA-MID Bands with two polarization signals
 - B1: from 0.35 GHz to 1.05 GHz sampled at 4 GSps
 - B2: from 0.95 GHz to 1.76 GHz sampled at 4 GSps
 - B3: from 1.65 GHz to 3.05 GHz sampled at 3.2 GSPs
 - B4: from 2.8 GHz to 5.2 GHz sampled at 16 GSps
 - B5a: from 4.6 GHz to 8.5 GHz sampled at 9 GSps
 - B5b: from 8.3 GHz to 15.4 GHz sampled at 16 GSps
Receiver overview
Development Phase

3-bit at 26 GSps
Eval. Board
Prototype Board
Last time to buy

4-bit at 16 GSps
Eval. Board
Prototype Board
ENOB < 3 bits

6-bit at 32 GSps
Eval. Board
Prototype Board in progress

ECP: E5a & E5b

PDR: July 2017

ECP: Talon board

SKAO: May 2022

DDR: July 2023

CDR: end of 2023
First Design

- Based on 4-bit ADC at 16 GSps
 - Two ADC boards (B5a at 9 GSps and B5b at 16 GSps)
 - Two RF boards with two outputs (one per band)
 - Two sampling clocks (9 GHz and 16 GHz)
First Design

- Our design is based on the NRC design
 - A PSU enclosure
 - A main enclosure composed of two cavities
 - RF cavity
 - Digital cavity with two levels of EMI shielding
First Design

- Examples of realization

3.96 GHz

15.84 GHz

8.91 GHz
First Design: Results

<table>
<thead>
<tr>
<th></th>
<th>Mechanical</th>
<th>Electronics</th>
<th>B5a</th>
<th>B5b</th>
<th>Comments / Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXS45.RF</td>
<td>4 RF enclosures</td>
<td>4 boards (failures)</td>
<td>Simulation</td>
<td>Simulation</td>
<td>- Frequency response of B5b</td>
</tr>
<tr>
<td>RXS45.CLK</td>
<td>2 RF enclosures</td>
<td>3 boards</td>
<td>Measurements</td>
<td>Measurements</td>
<td></td>
</tr>
</tbody>
</table>
| **RXS45.ODL** | 4 RF enclosures | 3 boards | Measurements | Measurements | - RFI on site: < 3 bits
- Additional bit needed for slope correction
- Adsantec: production? |
| **RXS45.PWR** | 1 PSU enclosure | Simulation | Analysis | Analysis | - Power loss too important |
| **RXS45** | 1 main enclosure | B5b | Analysis | Analysis | - not ready for an end-to-end test |

- Meeting at LAB with SKAO in May 2022
 ⇒ New design with higher resolution ADC.
New Design

- 6-bit ADC at 32 GSps: first Nyquist zone includes B5a & B5b:
New Design

- **Adsantec solution** ⇒ **Micram solution**
 - Two ADC boards (B5a at 9 GSps and B5b at 16 GSps)
 - Two RF boards with two outputs (one per band)
 - Two sampling clocks (9 GHz and 16 GHz)
New Design

- Adsantec solution \Rightarrow Micram solution
 - Only one ADC board
 - One output for RF board
 - One clock at 16 GHz
New Design

- 5 SKA-MID Bands with two polarization signals
 - B1: from 0.35 GHz to 1.05 GHz sampled at 4 GSPs
 - B2: from 0.95 GHz to 1.76 GHz sampled at 4 GSPs
 - B3: from 1.65 GHz to 3.05 GHz sampled at 3.2 GSPs
 - B4: from 2.8 GHz to 5.2 GHz sampled at 32 GSPs
 - B5a: from 4.6 GHz to 8.5 GHz sampled at 32 GSPs
 - B5b: from 8.3 GHz to 15.4 GHz sampled at 32 GSPs
Development Plan

- Design changes
 - Only one ADC board with two ADCs at 32 GSps: first Nyquist zone includes B5a and B5b
 - 48 outputs at 8 Gbps instead of 16 outputs at 16 Gbps $\Rightarrow 4 \times \text{Tx12}$ (ADC outputs) and B04 (control and monitoring data)
 - RF chain very similar to Adsantec solution
 - Clock synthesizer board is simpler (only frequency multiplication by 4)

 - Thermal analysis to be done (13 W each)
 - Several shielding layers to be implemented
 - Mechanical enclosure to be redesigned

 - RXPU: Additional FPGA board to be designed for the B5 receiver interfacing with the Talon board (FPGA board developed by NRC)
 - For CDR: use a Talon board (to be discussed with SKAO)
Development Plan

- Goal is to pass the Critical Design Review (CDR) before end of 2023
- In one year, a lot of activities to be done: design, fabrication, test, document submission for reviews
- Two prototypes tested on site
- Detailed design review in June/July 2023: end-to-end test results in lab environment with EMC qualification (electromagnetic reverberation chamber at Airbus in Toulouse)
- Mechanical design based on NRC design with some changes from Swedish team
- Support from FEDD for industrialization
- Funding from Nouvelle Aquitaine and CNRS (INSU)