

French Contribution To The Construction Of SKA-MID

Stéphane Gauffre

SKA-France Day 2022

November 10th, 2022

- □ Receiver overview
- □ First Design
- □ New Design
- Development plan

Receiver overview

SPF B5b

SAT

SAT Ref Fred 7 92 GH

Receiver overview

Development Phase

First Design

- Based on 4-bit ADC at 16 GSps
 - Two ADC boards (B5a at 9 GSps and B5b at 16 GSps)
 - Two RF boards with two outputs (one per band)
 - > Two sampling clocks (9 GHz and 16 GHz)

Stéphane Gauffre

SKA-France Day 2022

November 10th, 2022 7

- Our design is based on the NRC design
 - A PSU enclosure

First Design

- A main enclosure composed of two cavities
 - RF cavity
 - Digital cavity with two levels of EMI shielding

Stéphane Gauffre

First Design

• Examples of realization

8

	Mechanical	Electronics	B5a	B5b	Comments / Risks
RXS45.RF	4 RF enclosures	4 boards (failures)	Simulation	Simulation	- Frequency response of B5b
RXS45.CLK	2 RF enclosures	3 boards	Measurements	Measurements	
RXS45.ODL	4 RF enclosures	3 boards	Measurements	Measurements	 RFI on site: < 3 bits Additional bit needed for slope correction Adsantec: production?
RXS45.PWR	1 PSU enclosure	Simulation			- Power loss too important
RXS45	1 main enclosure	B5b	Analysis	Analysis	 not ready for an end-to-end test

- Meeting at LAB with SKAO in May 2022
- \Rightarrow New design with higher resolution ADC.

normalized ENOB @ 34 GS/s

ADC2 freqresp

ADC2

• 6-bit ADC at 32 GSps: first Nyquyst zone includes B5a & B5b:

Stéphane Gauffre

SKA-France Day 2022

40

50

Amplitude @ 34 GS/s

New Design

Adsantec solution ⇒ Micram solution

- Two ADC boards (B5a at 9 GSps and B5b at 16 GSps)
- Two RF boards with two outputs (one per band)
- > Two sampling clocks (9 GHz and 16 GHz)

New Design

Adsantec solution ⇒ Micram solution

- Only one ADC board
- One output for RF board
- ➢ One clock at 16 GHz

New Design

SPF B5a

SPF B5b

RXS45

SAT 1PPS

SAT

SAT Ref Fred 7 92 GH

Development Plan

- Design changes
 - Only one ADC board with two ADCs at 32 GSps: first Nyquyst zone includes B5a and B5b
 - ➤ 48 outputs at 8 Gbps instead of 16 outputs at 16 Gbps \Rightarrow 4×Tx12 (ADC outputs) and B04 (control and monitoring data)
 - ➢ RF chain very similar to Adsantec solution
 - Clock synthesizer board is simpler (only frequency multiplication by 4)
 - Thermal analysis to be done (13 W each)
 - Several shielding layers to be implemented
 - Mechanical enclosure to be redesigned
 - RXPU: Additional FPGA board to be designed for the B5 receiver interfacing with the Talon board (FPGA board developped by NRC)
 - For CDR: use a Talon board (to be discussed with SKAO)

Development Plan

- Goal is to pass the Critical Design Review (CDR) before end of 2023
- In one year, a lot of activities to be done: design, fabrication, test, document submission for reviews
- Two prototypes tested on site
- Detailed design review in june/july 2023: end-to-end test results in lab environment with EMC qualification (electromagnetic reverberation chamber at Airbus in Toulouse)
- Mechanical design based on NRC design with some changes from swedish team
- Support from FEDD for industrialization
- Funding from Nouvelle Aquitaine and CNRS (INSU)